ABSOLUTE CONFIGURATIONS OF 24-HYDROXYCHOLESTEROL AND RELATED COMPOUNDS

Naoyuki Koizumi, Masuo Morisaki and Nobuo Ikekawa^{*} Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan

Atsuo Suzuki and Toru Takeshita Teijin Institute of Biomedical Research and Central Research Institute, Hino-shi, Tokyo, Japan

(Received in Japan 1 May 1975; received in UK for publication 12 May 1975)

We have recently synthesized a series of C-24 epimers <u>1</u> and <u>2</u> of active forms of vitamin D, such as 24-hydroxy²-, 24,25-dihydroxy³-, 1a,24-dihydroxy⁴and 1a,24,25-trihydroxy⁵-vitamin D₃. As a consequence of those studies, the stereochemistry of 24-hydroxy group in 24,25-dihydroxyvitamin D₃ which is one of the important metabolites of vitamin D₃ has been concluded as 24R, <u>2b⁶</u>. Furthermore, some of the biological activity was observed with only one of the 24-hydroxy stereoisomers, suggesting functional importance of 24-hydroxylation of vitamin D^{6,7}. However, C-24 configuration of the most fundamental analog, i.e. 24-hydroxyvitamin D₃ has been remained obscure due to the uncertainty⁸ of the stereochemistry of the synthetic precursor, 24-hydroxycholesterol⁹. It is urgent need therefore, to determine the absolute configurations of 24-hydroxycholesterol and related compounds.

24S,25-Epoxycholesterol benzoate($\underline{3}$) whose configuration at C-24 has been determined previously³, was refluxed with LiAlH₄-AlCl₃(3 : 1) in ether to give

2203

25-hydroxycholesterol (55 %) and 24S-hydroxycholesterol (5a) (35 %). The 24-ol 5a was isolated by chromatography and converted to the corresponding dibenzoate 5b. During those procedures, epimerization at C-24 did not occur as evidenced from single peak of 5b on high pressure liquid chromatography(hplc) which resolves effectively C-24 isomers¹⁰. By a similar method, 24R,25-epoxide 4^3 was led to dibenzoate 6b. Each dibenzoates 5b and 6b were identified respectively, with the known⁹ 3β ,24 ξ^1 -dibenzoate(the more polar and higher mp isomer) and 3β ,24 ξ^2 -dibenzoate(the less polar and lower mp isomer), in respect of mp, tlc and hplc. Thus, it is concluded that $24\xi^1$ -hydroxycholesterol(cerebrosterol) is 24S-hydroxycholesterol(5a) and $24\xi^2$ -isomer is 24R-hydroxycholesterol(6a).

A further confirmation was obtained by the modified Horeau's method¹¹ applied to THP ethers <u>5e</u> and <u>6e</u>. These were prepared from the corresponding dibenzoate <u>5b</u> and <u>6b</u> by the following sequence : (1) a partial hydrolysis with 1.1 eqiv. KOH in methanol-THF to form the monobenzoate <u>5c</u> and <u>6c</u>, (2) treatment with dihydropyran in CH_2Cl_2 containing tosyl acid to the THP ether <u>5d</u> and <u>6d</u>, (3) saponification with KOH in methanol-THF, affording $24\xi^1$ -isomer <u>5e</u> mp 157-158.5° and $24\xi^2$ -isomer <u>6e</u>, mp 154.5-155.5°. As shown in Fig. the configuration of <u>5e</u> and <u>6e</u> were determined as 24S-OH and 24R-OH, respectively, which are fully consistent with the above results obtained by chemical interrelations.

Fig. Gas liquid chromatograms of the $(R)-\alpha$ -phenylethylamides of excess (-)-(R)- and $(+)-(S)-\alpha$ -phenylbutyric acid after acylation of cyclohexanol, <u>6e</u> and <u>5e</u>. Apparatus: Shimadzu, 4BM-PF gas chromatograph. Column : all glass capillary column coated with OV-17, 20 m X 0.25 mm i.d., at 210^o.

From the above analogies, the stereochemistry of the analogous dibenzoates $\underline{7}$ which were the synthetic precursor of $1\alpha, 24\xi^1$ - and $1\alpha, 24\xi^2$ -dihydroxyvitamin D_3 ($\underline{1c}$ and $\underline{2c}$)⁴ can be deduced : 24S and 24R configurations may be assigned to the more polar($24\xi^1$) and the less polar($24\xi^2$) compounds, respectively. Carbon-13 nmr analysis¹² of a series of C-24 epimers(Table) supported those supposition. It can be seen that signals of C-20, -21 and -24 of 24S-OH isomers always appeared at a lower field than those of 24R-OH isomers, presenting an useful diagnostic method for differentiation of 24-OH epimers.

It has now been established that $24\xi^1$ -hydroxy- and $l\alpha$, $24\xi^1$ -dihydroxyvitamin D_3 (<u>la</u> and <u>lc</u>) have 24S-OH and $24\xi^2$ -hydroxy- and $l\alpha$, $24\xi^2$ -dihydroxyvitamin D_3 (<u>2a</u> and <u>2c</u>) have 24R-OH.

	Bz0		HO BZO 7		OBz OTMS Bz0	
	R(<u>6b</u>)	S(<u>5b</u>)	R	s	R	s
C-20	35.34	35.63	35.34	35.63	35.35	36.04
C-21	18.64	18.93	18.64	18.74	18.55	18.95
C-24	79.21	79.60	79.21	79.60	80.76	81.74

Table	13C	Chemical	shift	(maa)
-------	-----	----------	-------	-------

* Recorded on PS/PFT-100(JEOL) in deuteriochloroform with tetramethylsilane as internal standard.

It is interesting to note that cerebrosterol isolated from brain is 24Shydroxycholesterol, while the natural 24,25-dihydroxyvitamin $D_3(2b)$ has 24R-OH function and a series of 24R-OH-vitamin D analogs exert higher biological activity than 24S-OH congeners^{6,7}.

References and Footnotes

- This report is Part 23 in the series of "Studies on Steroids". Part 22: N.Awata, M.Morisaki and N.Ikekawa, Biochem. Biophys. Res. Comm., in press.
- N.Ikekawa, M.Morisaki, N.Koizumi, M.Sawamura, Y.Tanaka and H.F.DeLuca, Biochem. Biophys. Res. Comm., 62, 485 (1975).
- M.Seki, N.Koizumi, M.Morisaki and N.Ikekawa, <u>Tetrahedron Letters</u>, 15 (1975).
- M.Morisaki, N.Koizumi, N.Ikekawa, T.Takeshita and S.Ishimoto, <u>J. Chem</u>. <u>Soc. Perkin I</u>, in press.
- N.Ikekawa, M.Morisaki, N.Koizumi, Y.Kato and T.Takeshita, <u>Chem. Pharm</u>. <u>Bull.</u>, 23, 695 (1975).
- Y.Tanaka, H.F.DeLuca, N.Ikekawa, M.Morisaki and N.Koizumi, <u>Arch. Biochem</u>. Biophys., submitted.
- Y.Tanaka, H.Frank, H.F.DeLuca, N.Koizumi and N.Ikekawa, <u>Biochemistry</u>, submitted.
- 8. The configuration of 24-hydroxycholesterol⁹ has been determined in 1954 (W.Klyne and W.M.Stokes, <u>J. Chem. Soc</u>., 1979) based on optical rotations data. However, it was suggested in 1970 (J.E.VanLier and L.L.Smith, <u>J. Pharm. Sci</u>., <u>59</u>, 719) <u>albeit</u> with an undefinite evidence, that this assignment should be reversed. Therefore, we have retained the original nomenclature⁹ for the previous papers^{2,4}.
- 9. A. Ercoli and P. de Ruggieri, J. Am. Chem. Soc., 75, 3284 (1953).
- 10. Retention times of 24S- and 24R-isomers were 10.1, 9.0 min., respectively, when analyzed with Shimadzu-DuPont 830 Liquid Chromatograph. Column, Zorbax SIL (25 cm X 2.1 mm); mobile phase, 10 % CH₂Cl₂ in hexane; pressure, 60 kg/cm²; flow rate, 0.26 ml/min; detector, UV photometer.
- 11. C. J. W. Brooks and J. D. Gilbert, <u>J. Chem. Soc. Chem. Comm.</u>, 194 (1973); J. D. Gilbert and C. J. W. Brooks, <u>Anal. Letters</u>, 639 (1973).
- 12. Although C-24 epimers of $\underline{8}$ were distinguished by proton nmr⁵, this technique could not differentiate C-24 epimers of <u>5b-6b</u> and <u>7</u>.